COURSE TITLE:	Foundations of Energy
UNIT TITLE:	Renewable Energy–Biomass

SECTION 1: General Information and Overview

Grade Level:

Suggested Number of Lessons: 6-8

Suggested Time to Complete Unit: 5-10 class periods

Unit Overview: This unit provides an overview of biomass and biofuels as sources of energy and how waste can be transformed into energy.

SECTION 2: Essential Questions

- 1. What basic information concerning biomass and biofuels will I need to know regarding the future of energy? (Biomass; Biogas; Waste to Energy to power generation plants)
- 2. What processes are involved in changing biomass into biofuels?
- 3. How can the use of biomass impact my future as an individual, my family and the economy?

SECTION 3: Major Focus

Technical Content	Learner Activities		
CTE	(Enabling Knowledge and	Core Content	
Program of Studies	Skills/Processes)	For Assessment	Academic Expectations
Construction	Using the provided PDF files	SC-HS-4.6.4	2.1 Students understand
Technology KOSSA	in the <i>Biomass Unit</i> :	Students will:	scientific ways of
Standard AD-002:	Research and discuss current	• describe the components	thinking and working
Demonstrate the	and new technologies in	and reservoirs involved in	and use those methods to
ability to learn new	relation to waste and energy	biogeochemical cycles	solve real-life problems.
processes and steps.	technology.	(water, nitrogen, carbon	
		dioxide and oxygen);	
2.1 Assess the	View a video or a power-	• explain the movement of	
impact of various	point on "Biomass and	matter and energy in	
current and new	Biofuels."	biogeochemical cycles	
technologies on the		and related phenomena.	
economy.		The total energy of the	
		universe is constant. Energy	
2.3Describe	Identify key components as:	can change forms and/or be	
similarities and	-definition of terms	transferred in many ways,	
differences between	-sources of biomass	but it can neither be created	
renewable and	-products produced from	nor destroyed. Movement of	

FOUNDATIONS OF ENERGY--BIOMASS

nonrenewable sources various sources of biomass matter between reservoirs is of energy. materials driven by earth's internal -availability of these resources and external sources of (both raw and finished energy. These movements products) are often accompanied by a change in physical and -future trends in the industry chemical properties of the **2.1--**Assess the **Compare** findings with matter. Carbon, for example, **5.1** Students use critical impact of the various classmates and agree on occurs in carbonate rocks thinking skills such as definition, availability in energy sources on the such as limestone, in the analyzing, prioritizing, economy of Kentucky and future trends atmosphere as carbon categorizing, evaluating, and comparing to solve a Kentucky. both regionally and dioxide gas, in water as nationally. dissolved carbon dioxide and variety of problems in in all organisms as complex real life situations. molecules that control the chemistry of life. 1.16--Use computer Conduct a research using DOK 3 skills related to resource texts, websites, concepts of energy in brochures, booklets and the various types. NEED material--Energy Info SC-H-ET-U-7 book Explore Waste to Energy http://www.need.org/Energy-Solutions Infobooks to identify and define the following terms: -biodegradable -compostable -life cycle assessment -polylactic acid (PLA). **Listen** to a discussion by **6.2** Students use what **6.2--**Identify ways to teacher on the process to be they already know to conserve energy. used in group work on acquire new knowledge, "Building a Museum of Solid develop new skills, or Waste." From this interpret new presentation, identify one of experiences. the following topics for group work: • Introduction to Solid Waste • Source Reduction • Introduction to Recycling • Recycling Plastics • Recycling Metals • Recycling Paper/Glass • Waste to Energy Landfills

2.1-2.3 Engage in meaningful hands-on minds-on in conceptual-based activities in the area of energy.	Participate in the group activity identified from the above listing. As a group, identify questions needed to research the chosen topic and the answers needed for a presentation to the class. Use materials as references, resource texts, booklets, videos and websites to document answers. Develop a script including visuals, graphs and other display materials for the exhibit and presentation. Participate in the presentation of the group's component of the activity Museum of Solid Waste. Evaluate the group presentation/exhibit using a prescribed rubric.		2.1 Students understand scientific ways of thinking and working and use those methods to solve real-life problems.
5.1 Compare the pros and cons in the use of the various energy sources.	Take notes on each group's presentation/exhibit.		 6.2 Students use what they already know to acquire new knowledge, develop new skills, or interpret new experiences. 2.2 Students identify, analyze, and use patterns such as cycles and trends to understand past and present events and predict possible future events.
Construction Technology KOSSA Standard AD-003: Implement new processes given oral instructions.	Participate in a class discussion on the impact biomass has on an individual, the family and the national economy.	SC-HS-4.6.5 Students will describe and explain the role of carboncontaining molecules and chemical reactions in energy transfer in living systems. Living systems require a	

2.1-2.3 Engaging in meaningful hands-on, minds-on conceptual based activities in the area of energy technologies.	Participate in a jeopardy-type exercise to determine major concepts learned in this unit.	continuous input of energy to maintain their chemical and physical organization since the universal tendency is toward more disorganized states. The energy for life primarily derives from the Sun. Plants capture energy by absorbing light and using it to break weaker bonds in reactants (such as carbon dioxide and water) in chemical reactions that result in the formation of carboncontaining molecules. These molecules can be used to assemble larger molecules (e.g., DNA, proteins, sugars, fats). In addition, the energy released when these molecules react with oxygen to form very strong bonds can be used as sources of energy for life processes. DOK 3	
Construction Technology KOSSA Standard EA-005: Display initiative. Students will investigate with teacher guidance the role of biomass and biogas technology in the future of energy.	Using the NEED resource CD and the Secondary info book, students will explore biomass and investigate its physical characteristics and interpret findings. Develop a plan for recycling in the school. Develop a plan for the class and share with classmates.		 2.3 Students identify and analyze systems and the ways their components work together or affect each other. 2.4 Students use the concept of scale and scientific models to explain the organization and functioning of living and nonliving things and predict other characteristics that might be observed. 2.5 Students understand that under certain conditions nature tends to remain the same or move toward a balance.

SECTION 4: Culminating Project with Scoring Guide

Students will build and display a Waste to Energy Expo using 3-sided science fair boards accompanying each expo board with a powerpoint or short video clip.

SCORING GUIDE:

CATEGORY	4	3	2	1
CONTENT	EXTENSIVE- CONTENT BEYOND WHAT IS TAUGHT IN CLASS	GOOD- EXPLANANTION OF CONCEPTS COVERED IN CLASS	BASIC – WHAT HAS ALREADY BEEN COVERED IN CLASS	LIMITED- DOESN'T COVER MATERIAL AS WELL AS DONE IN CLASS
TECHNOLOGY	EXTENSIVE- POWER POINT WITH EXCELLENT ANIMATION AND PICTURES	APPROPRIATE- POWER POINT HAS SOME ANIMATION AND PICTURES	BASIC- POWER POINT WITH LITTLE ANIMATION AND PICTURES	LIMITED – POWER POINT WITH NO ANIMATION OR PICTURES
PRESENTATION	EXCELLENT- FLOWS WELL, AUDIENCE VERY ATTENTIVE- WELL REHEARSED	GOOD – FLOWS WELL PARTICIPANTS KNOW MATERIAL WELL	BASIC – FLOWS UNEVENLY MAY HAVE SOME READING OF NOTES OR SLIDES	LIMITED- PARTICIPANTS READ FROM NOTES OR SLIDES
INTEREST	EXTENSIVE – PARTICIPANTS MAKE MANY EXTENSIONS AND EXPLANATIONS	APPROPRIATE – ENCOURAGES QUESTIONS AND COMMENTS	BASIC – CAN FIELD SOME QUESTIONS	LIMITED – GLAD TO BE THROUGH WITH THE PRESENTATION

SECTION 5: Assessment and Enabling Skills and Processes

Assessment:	Waste to Energy Exhibit/Expo and presentation, Plan of Action for Recycling, group work, class notebook
-------------	---

SECTION 6: Support Materials (i.e., Resources, Technology, and Equipment)

A. Resources	NEED materials, (Biomass folder, Museum of Solid Waste), videos, film clips and web-sites (Biomass Biofuels in
	Kentucky), www.energy.ky.gov
B. Technology	Personal tools, computer, LCD projector
C. Websites (samples of many available)	WWW.need.org; www.eia.gov; www.doe.gov; Google
D. Equipment	Glue guns and supplies, science fair boards